Publications

Google Scholar, ORCID: 0000-0002-4224-798X

2022, 2021, 2020, 2019, 2017, 2016, 2015, 2014, 2013, 2012

2022

TOP

25. Blue light-activatable DNA for remote control of cell-free logic gates and synthetic cells.
D.Hartmann, R.Chowdhry, J.M.Smith, M.J.Booth
ChemRxiv (2022)
DOI: 10.26434/chemrxiv-2022-p8xgb

24. Engineering cellular communication between light-activated synthetic cells and bacteria.
J.M.Smith, D.Hartmann, M.J.Booth
BioRxiv (2022)
DOI: 10.1101/2022.07.22.500923

23. DNA and RNA sequencing.
M.J.Booth
Nucleic Acids in Chemistry and Biology: Edition 4 Editors: G Michael Blackburn, Martin Egli, Michael J Gait, Jonathan K Watts. ISBN 978-1-78801-904-0 (2022)

22. Reaction–Diffusion Patterning of DNA-Based Artificial Cells.
A.Leathers, M.Walczak, R.A.Brady, A.Al Samad, J.Kotar, M.J.Booth, P.Cicuta, L.Di Michele
Journal of the American Chemical Society (2022)
DOI: 10.1021/jacs.2c06140
(BioRxiv, DOI: 10.1101/2022.03.24.485404)

21. Controlling Synthetic Cell-Cell Communication.
J.M.Smith, R.Chowdhry, M.J.Booth
Frontiers in Molecular Bioscience, 8, 809945 (2022)
DOI: 10.3389/fmolb.2021.809945

2021

TOP

20. A Lipid-Based Droplet Processor for Parallel Chemical Signals.
I.Cazimoglu, M.J.Booth, H.Bayley
ACS Nano, 15, 12, 20214 (2021)
DOI: 10.1021/acsnano.1c08217
(BioRxiv, DOI:10.1101/2021.05.05.442835)

19. Reduced Bisulfite Sequencing: Quantitative Base-Resolution Sequencing of 5-Formylcytosine.
M.J.Booth, S.Balasubramanian
Methods in Molecular Biology: TET Proteins and DNA Demethylation, 2272, 3-12 (2021)
DOI:10.1007/978-1-0716-1294-1_1

2020

TOP

18. Controlling gene expression with light: a multidisciplinary endeavour.
D.Hartmann, J.M.Smith, G.Mazzotti, R.Chowdhry, M.J.Booth
Biochemical Society Transactions, BST20200014 (2020)
DOI:10.1042/BST20200014

17. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates.
J.Feng, P.Martin-Baniandres, M.J.Booth, G.Veggiani, M.Howarth, H.Bayley, D.Rodriguez-Larrea
Communications Biology, 3, 159 (2020)
DOI:10.1038/s42003-020-0840-5

16. Multi-responsive hydrogel structures from patterned droplet networks.
F.G.Downs, D.J.Lunn, M.J.Booth, J.B.Sauer, W.J.Ramsay, R.G.Klemperer, C.J.Hawker, H.Bayley
Nature Chemistry, 12, 363 (2020)
DOI:10.1038/s41557-020-0444-1​

2019

TOP

15. Controlled deprotection and release of a small molecule from a compartmented synthetic tissue module.
M.J.Booth, I.Cazimoglu, H.Bayley
Communications Chemistry, 2, 142 (2019)
DOI:10.1038/s42004-019-0244-y​

14. Droplet Networks, from Lipid Bilayers to Synthetic Tissues.
M.J.Booth, V.Restrepo-Schild, F.G.Downs, H.Bayley
Encyclopedia of Biophysics (2019)
DOI:10.1007/978-3-642-35943-9_567-1

2017

TOP

13. Light-patterning of synthetic tissues with single droplet resolution.
M.J.Booth, V.Restrepo-Schild, S.J.Box, H.Bayley
Scientific Reports, 7, 9315 (2017)
DOI:10.1038/s41598-017-09394-9

12. Functional aqueous droplet networks.
M.J.Booth, V.Restrepo-Schild, F.G.Downs, H.Bayley
Molecular Biosystems, 13, 1658-1691 (2017)
DOI:10.1039/C7MB00192D

11. Light-patterned current generation in a droplet bilayer array.
V.Restrepo-Schild, M.J.Booth, S.J.Box, S.N.Olof, M.Radhakrishnan, H.Bayley
Scientific Reports, 7, 46585 (2017)
DOI:10.1038/srep46585

2016

TOP

10. 3D-printed synthetic tissues.
M.J.Booth, H.Bayley
The Biochemist, 38 (4), 16 (2016)
DOI:http://www.biochemist.org/bio/03804/0016/038040016.pdf

9. Light-activated communication in synthetic tissues.
M.J.Booth, V.Restrepo-Schild, A.D.Graham, S.N.Olof, H.Bayley
Science Advances, 2 (4), e1600056 (2016)
DOI:10.1126/sciadv.1600056

8. Combining the Optimized Yeast Cytosine Deaminase Protein Fragment Complementation Assay and an In Vitro Cdk1 Targeting Assay to Study the Regulation of the γ-Tubulin Complex.
P.H.Ear, J.Kowarzyk, M.J.Booth, D.Abd-Rabbo, K.Shulist, C.Hall, J.Vogel, S.W.Michnick
Cell Cycle Oscillators: Methods and Protocols, 1342, 237 (2016)
DOI:10.1007/978-1-4939-2957-3_14

2015

TOP

7. Chemical methods for decoding cytosine modifications in DNA.
M.J.Booth, E.Raiber, S.Balasubramanian
Chemical Reviews, 115 (6), 2240-2254 (2015)
DOI:10.1021/cr5002904

2014

TOP

6. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution.
M.J.Booth, E.Raiber, S.Balasubramanian
Nature Chemistry, 6 (5), 435-440 (2014)
DOI:10.1038/nchem.1893

2013

TOP

5. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation.
I.M.Iurlaro, G.Ficz, D.Oxley, E.Raiber, M.Bachman, M.J.Booth, S.Andrews, S.Balasubramanian, W.Reik
Genome Biology, 14 (10), R119 (2013)
DOI:10.1186/gb-2013-14-10-r119

4.  Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine.
M.J.Booth, T.W.Ost, D.Beraldi, N.M.Bell, M.R.Branco, W.Reik, S.Balasubramanian
Nature Protocols, 8 (10), 1841 (2013)
DOI:10.1038/nprot.2013.115

3. Dissection of Cdk1-cyclin complexes in vivo.
P.H.Ear, M.J.Booth, D.Chen, C.Hall, J.K.Moreno, J.Vogel, S.W.Michnick
PNAS, 110 (39), 15716 (2013)
DOI:10.1073/pnas.1305420110

2012

TOP

2. Genome-wide distribution of 5-formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase.
E.Raiber, D.Beraldi, G.Ficz, H.Burgess, M.R.Branco, P.Murat, D.Oxley, M.J.Booth, W.Reik, S.Balasubramanian
Genome Biology, 13:R69 (2012)
DOI:10.1186/gb-2012-13-8-r69

1. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.
M.J.Booth, M.R.Branco, G.Ficz, D.Oxley, F.Krueger, W.Reik, S.Balasubramanian
Science, 336 (6083), 934 (2012)
DOI:10.1126/science.1220671